If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-38x+80=0
a = 2; b = -38; c = +80;
Δ = b2-4ac
Δ = -382-4·2·80
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{201}}{2*2}=\frac{38-2\sqrt{201}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{201}}{2*2}=\frac{38+2\sqrt{201}}{4} $
| 9z=z+56 | | 8m-20=-4 | | n/400=6+2 | | -10=3x+14 | | -20n-(-36n)=16 | | x-6=34-15(x+8) | | -40a+-37a+18a+28a-12a=-43 | | 2(4x-3)=6x-2 | | 20y=3 | | x+45-7(x-15)=-40-(x+35) | | 4(x+35)-3(-x+28)=-35 | | 29u-29u+5u+4u-2=43 | | 5(x+8)+3(-x+4)=6 | | x-86/7=131/8 | | 1,5x-2=4 | | 9j-5j-j+2j-4j+1=12 | | 5(x+4)=3(x-4) | | n-21=13 | | 5x+7=6x-26+x+15 | | 2(x-2)=3(x+7 | | 1/6(1-6x)=1/3(6x+1/2) | | 9(x-12)=5(x+8) | | 8x-10=-1x-19 | | u-u+3u-3u+2u=18 | | 17.5x=154 | | 8x^2+3x-11=0 | | 8/3+x=5/3+x | | 5x-12=8x-12 | | 10x-5=7x-1 | | -x+7x+16x+-15x-(-14)=0 | | 4x-18=2x+6+36 | | 0=-40x^2+44x-8.1 |